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Abstract 
 While pancreatic cancer is a deadly disease that is difficult to diagnose at an early stage, early 

diagnosis yields a much larger survival rate, making it a key step for treatment.  Machine learning has 

shown promise in the early diagnosis of many diseases by providing more accurate predictions than 

doctor’s intuition.  The goal of this study was to develop Decision Tree (DT), Random Forest (RF), 

Boosted Trees (BT), Logistic Regression (LR), and Support Vector Machine (SVM) models to predict 

one’s risk of developing pancreatic cancer, improving upon previous Artificial Neural Network (ANN) 

and LR models.  In addition, this study investigated the effects of including depression data on model 

performance, tested the models using an additional dataset, and created a mobile app to facilitate 

prediction by an end-user.  The training dataset consisted of 17 pancreatic cancer risk factors, including 

demographic (i.e., age, race), lifestyle (i.e., smoking, alcohol), and disease (i.e., diabetes, hypertension) 

factors.  Data were derived from two de-identified and publicly-available datasets: the Integrated Public 

Use Microdata Series (IPUMS) healthy surveys and the National Cancer Institute’s Prostate, Lung, 

Colorectal and Ovarian (PLCO) study, encompassing a total of 752,527 patients, 983 of whom had 

pancreatic cancer.  Data were re-coded, normalized, and split into training, validation, and testing sets.  

Measures were also taken to balance the classes and to handle missing values.  The hyperparameters of 

the DT, RF, BT, LR, and SVM models were chosen to maximize area under the receiver operating 

characteristic curve (AUC), an important metric to evaluate the predictive power of the models.  The BT 

model achieved a sensitivity (true positive rate) of 0.788, a specificity (true negative rate) of 0.791, and 

the highest AUC (0.870) out of the five algorithms and thus was chosen to be embedded within the 

mobile app.  Models were also tested on an independent, de-identified dataset consisting of pancreatic 

cancer cases made available by the Pancreatic Cancer Action Network (PanCAN), but missing values and 

the absence of key variables limited usefulness and yielded inconsistent results.  In addition, age, physical 

activity, smoking, and race were important predictors of pancreatic cancer, while depression, among 

others, were not.  In this study, machine learning models were created and incorporated into an app to 

help identify one’s risk of developing pancreatic cancer at an early stage.
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Introduction 
 Pancreatic cancer is the third leading cause of death among the most commonly diagnosed 

cancers (Siegel et al., 2020).  The average five-year relative survival rate of patients diagnosed with 

pancreatic cancer is 9%, and in 2020 an estimated 47,050 people will die from an estimated 57,600 new 

cases of pancreatic cancer (Siegel et al., 2020).  However, while still low, the survival rate for patients 

diagnosed with pancreatic cancer at an early stage is 37%, indicating that early diagnosis is key for 

survival (Siegel et al., 2020).  Effective screening for pancreatic cancer at an early stage is lacking, and 

with current techniques, it is impractical to screen the entire population on a regular basis since pancreatic 

cancer has an extremely low lifetime risk of 1% and screening can expose patients to harmful radiation 

(McGuigan et al., 2018; Poruk et al., 2013).  As a result, it is vital that an alternative method is developed 

to identify those with a high risk of developing pancreatic cancer in order to increase their chance of 

survival. 

 As supervised machine learning has gained popularity, its use in the early detection of major 

diseases such as pancreatic cancer has been explored.  With the increase in electronic patient records, 

more training data is available for use in machine learning models, increasing their effectiveness and 

popularity (Uddin et al., 2019).  Moreover, machine learning models provide predictions of diseases with 

greater accuracy than traditional statistics or doctor’s intuition because there is often human error and bias 

(Uddin et al., 2019; Palaniappan & Awang, 2008).  In practice, using machine learning for disease 

prediction has been successful for at least 49 different diseases, including heart disease, diabetes, breast 

cancer, and Parkinson’s disease (Uddin et al., 2019).  As a result, developing an effective machine 

learning model to predict one’s risk of developing pancreatic cancer could help with its early diagnosis. 

 Machine learning models for disease prediction are evaluated in three main ways — sensitivity, 

specificity, and AUC (area under the receiver operating characteristic (ROC) curve) — each of which 

provides different information about a model’s performance.  Sensitivity, or true positive rate, is defined 

as the rate at which the model correctly identifies patients who have the disease, while specificity, or true 

negative rate, is defined as the rate at which the model correctly identifies patients who do not have the 

disease (Uddin et al., 2019; Trevethan, 2017).  AUC is the probability that a model ranks a random 

positive example it has never seen before closer to positive than a random negative example that it has 

never seen before (“Classification: ROC Curve and AUC,” n.d.).  In other words, the models best at 

discriminating between pancreatic cancer cases and healthy cases will have the highest sensitivity, 

specificity, and AUC values. 

There is discussion over which type of machine learning algorithm yields the highest sensitivity, 

specificity, and AUC values.  Uddin et al. (2019) examined multiple algorithms and their respective 

results encompassing 48 different studies for 49 different disease prediction problems.  Each study used  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 																		𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 
Figure 1: Top: Formulas for the calculation of sensitivity and specificity values (Trevethan, 2017).  TP = 
True Positives; TN = True Negatives; FP = False Positives; FN = False Negatives.  Bottom: In this 
scenario, AUC equals the probability that a random positive (green) example is ranked closer to 1.0 than a 
random negative (red) example (“Classification: ROC Curve and AUC,” n.d.). 
 

more than one algorithm, covering Artificial Neural Network (ANN), Logistic Regression (LR), Decision 

Tree (DT), K-nearest Neighbor (KNN), Naïve Bayes (NB), Random Forest (RF), and Support Vector 

Machine (SVM).  In their study, Uddin et al. (2019) found that the tree-based models, RF and DT, 

achieved superior performance the most and third-most times, respectively, compared to the other models 

tested.  As Uddin et al. (2019) notes, the performance of the models can vary from problem to problem, as 

each algorithm has its own strengths and weaknesses.  For instance, ANNs are strong at determining very 

complex non-linear relationships between variables, whereas LRs are effective with simpler problems 

(Uddin et al., 2019).  The performance of various algorithms could also be a function of the dataset used, 

as one lab group, involved in the prediction of pancreatic cancer, skin cancer, lung cancer, prostate 

cancer, and colorectal cancer, consistently found that when using the same dataset, the ANN performed 

better than the Linear Discriminant Analysis (LDA), SVM, NB, DT, RF, and LR algorithms (Muhammad 

et al., 2019; Nartowt et al., 2020; Roffman et al., 2018a, Roffman et al., 2018b).  Given the wide 

variability in results when training models, it is vital to evaluate multiple algorithms for each project. 

There are many risk factors of pancreatic cancer, including age, sex, race, BMI, asthma, coronary 

heart disease/attack, diabetes, emphysema, hepatitis/cirrhosis, hypertension, stroke, alcohol consumption, 

smoking, and amount of exercise (Lowenfels & Maisonneuve, 2006; Arnold et al., 2009; Larsson et al., 

2007; Gomez-Rubio et al., 2015; Muhammad et al., 2019; Everhart & Wright, 1995; Hassan et al., 2008; 

Ye et al., 2002; Lindgren et al., 2005; Zheng et al., 1993; Coughlin et al., 2000; Michaud et al., 2001; 

“Pancreatic Cancer Risk Factors,” n.d.).  There have been several machine learning models already 

created to predict one’s risk of developing pancreatic cancer using commonly available patient data, such 

as Muhammad et al. (2019)’s ANN and Hsieh et al. (2018)’s ANN and LR models.  While these models 

performed well in terms of sensitivity, specificity, and AUC (see Table 1), neither of them included 

another important risk factor for predicting pancreatic cancer: depression.  There are a few studies that 

have shown this link.  In one study, psychiatric illnesses (i.e., depression/anxiety) before medical 

symptoms were reported between 33% and 45% of pancreatic cancer patients (Kenner, 2018).  Another 
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study found that twice as many patients reported depression one year before diagnosis of pancreatic 

cancer than those who were not diagnosed with pancreatic cancer (Olson et al., 2016).  Given that the 

inclusion of relevant variables can improve model performance, it would be crucial to incorporate this 

risk factor to potentially achieve better predictions (Hall & Smith, 1998).  In addition, neither of those 

studies developed a way for patients to use their models. 

 
Table 1: Sensitivity, specificity, and AUC values of previous pancreatic cancer models 

Model Sensitivity Specificity AUC 

Muhammad et al., 2019 (ANN) 0.807 0.807 0.850 

Hsieh et al., 2018 (ANN) 0.873 (not calculated) 0.642 

Hsieh et al., 2018 (LR) 0.998 (not calculated) 0.707 
Muhammad et al. (2019); Hsieh et al. (2018). 
 
 There were three major goals of this study.  The first goal was to build a model with higher 

sensitivity, specificity, and AUC values compared to the previous pancreatic cancer models shown in 

Table 1 to predict one’s risk of developing pancreatic cancer.  This was proposed by including the 

depression variable in the models and using additional types of algorithms (DT, RF, Boosted Trees (BT), 

LR, and SVM).  The second goal was to test the models on an additional dataset consisting of pancreatic 

cancer patients to further evaluate their performance.  Finally, the third goal was to develop an iPhone app 

for doctors and/or patients to input data into the model to generate a prediction in an easy-to-use fashion. 

 

Methods 
Datasets 

 The models were trained on publicly-available, de-identified datasets from the Integrated Public 

Use Microdata Series (IPUMS) health surveys, a collection of data from the National Health Interview 

Survey (NHIS) dataset; as well as the “Pancreas” data from the National Cancer Institute’s Prostate, 

Lung, Colorectal and Ovarian (PLCO) study (Blewett et al., 2019; “PLCO,” n.d.).  The models were also 

tested on an independent, de-identified dataset made available by the Pancreatic Cancer Action Network 

(PanCAN). 

The IPUMS dataset consisted of 602,558 participants, 215 of whom had pancreatic cancer, from 

1999-2018.  Each participant was asked questions about their health and lifestyle and each answer was 

recorded as a numerical code.  For example, one question was, “have you ever been told by a doctor or 

health professional that you have diabetes or sugar diabetes?” and the answers were represented as 1 for 

“No” and 2 for “Yes.”  Questions pertaining to continuous variables such as age were asked in a similar 

manner and answers were represented as the exact value given. 
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The PLCO dataset consisted of 149,969 participants, 768 of whom had pancreatic cancer, from 

1993-2009.  Data from the Baseline Questionnaire, Supplemental Questionnaire, and Diet History 

Questionnaire were used.  Each participant was asked questions about their health and lifestyle and each 

answer was recorded as a numerical code.  For example, one question was, “has a doctor ever told you 

that you have any of the following conditions?” with checkboxes identifying a wide variety of 

diseases/conditions, and the answers were represented as 0 for “No” and 1 for “Yes.”  Questions 

pertaining to continuous variables were asked in a similar manner and answers were represented as the 

exact value given. 

The PanCAN dataset consisted of 1101 participants, all of whom had pancreatic cancer, from 

2015-2020.  Each participant was asked questions about their health and lifestyle and each answer was 

recorded as a numerical code or a string of text.  For example, one question was, “I have been diagnosed 

with diabetes?” and the answers were represented as “No” and “Yes.”  Questions pertaining to continuous 

variables were asked in a similar manner and answers were represented as the exact value given. 

The combined IPUMS + PLCO dataset consisted of 752,527 participants, 983 of whom had 

pancreatic cancer, from 1993-2018. 

There were 17 variables and 1 label (pancreatic cancer) included in the combined IPUMS + 

PLCO dataset that were chosen based upon availability in both datasets along with their previously 

studied correlation with pancreatic cancer.  However, only 6 of those variables were available in the 

PanCAN dataset.  Further information about the variables used in this study are detailed in the Appendix.  

Please note that the numbers of participants in this section were calculated after the following re-coding 

processes were performed. 

 

Re-Coding of the Datasets 

 Many processes were performed to handle missing data and to re-code values in the datasets.  

First, cases in all three datasets that were missing pancreatic cancer data were deleted.  In the PanCAN 

dataset, cases which either only had the age variable or were missing the age variable entirely were 

deleted.  In all datasets, cells with codes representing missing or unknown answers were cleared.  

Moreover, some variables were either combined with others or computed from others to match their 

definitions/criteria across all three datasets.  Finally, in order for the models to make proper predictions, 

all variables were re-coded such that each specific value represented the same thing across all three 

datasets.  Dataset re-coding was performed in IBM SPSS and Microsoft Excel. 
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Data Preprocessing and Split 

 After re-coding, the combined IPUMS + PLCO dataset was exported from SPSS to a .csv file.  

This file was uploaded to Google Colab for data pre-processing, where all code was custom written in the 

Python programming language version 3.6.9 using the Numpy, Pandas, Sklearn, and Matplotlib libraries. 

 Since the models cannot handle missing values, they were replaced with the mean of the values 

present in that particular column for continuous data and replaced with the mode of the values present in 

that particular column for categorical data (Aljuaid & Sasi, 2016).  Data were then randomly split with 

70% data for model training, 20% data for model validation, and 10% data for model testing.  This split 

was chosen in order to maximize the amount of data used for model training while still leaving enough for 

testing.  Continuous variables were then normalized as per standard machine learning practice 

(Muhammad et al., 2019; Roffman et al., 2018a, Roffman et al., 2018b). 

 The dataset was extremely unbalanced (out of the total 752,527 participants in the dataset, only 

983 of them had pancreatic cancer, or 0.13%).  If left untouched, a model would simply learn to predict 

each case as negative, therefore rendering it useless.  As a result, random up-sampling of the minority 

class (pancreatic cancer cases) was performed on the training data until both classes were balanced, as per 

standard machine learning practice (Boyle, 2019). 

 

Model Training, Validation, and Testing Procedures 

 Five algorithms — DT, RF, BT, LR, and SVM — were custom written in the Swift programming 

language version 5.3 with Apple’s CreateML framework (“Create ML,” n.d.).  CreateML was the chosen 

framework for this study because it enabled the development of the above algorithms as well as the ability 

to embed them natively within an iPhone app.  Unfortunately, an ANN was unable to be created due to 

limitations within CreateML. 

Training: All models in this study were trained on the training data using a 2019 iMac with a 3.2 

GHz 6-core Intel Core i7 processor.  All code was compiled using Xcode 12.1 running on macOS Big Sur 

11.0 beta 10. 

 Validation: During training, each model was evaluated on the validation data after each iteration 

and automatically tuned based on those results.  To prevent overfitting, the models stopped training 

automatically upon an increase in the validation loss value. 

 Testing: After training, each model was saved as a .mlmodel file and imported into a Xcode 

project containing a simulated app environment within the CoreML framework (“Core ML,” n.d.).  The 

model was evaluated on each row of the testing data and its corresponding prediction value (0-1) was 

recorded to a .csv file.  This file was then uploaded to Google Colab where sensitivity, specificity, and 
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AUC values were calculated using custom Python code.  Testing of the models on the PanCAN dataset 

was done directly within CreateML. 

 

Model Hyperparameter Tuning 

Each algorithm has hyperparameters, or values that must be set manually, that when tuned can 

lead to better results.  A baseline of each algorithm’s AUC value was established using its default 

hyperparameters.  Each hyperparameter was adjusted, one at a time, and compared to the baseline.  If the 

new model performed better than the baseline in terms of the AUC value, then that new hyperparameter 

was kept.  If not, it was reset back to its previous value.  AUC was the chosen metric for directly 

comparing models here and throughout this study because it represents the overall superiority of one 

model compared to another (Uddin et al., 2019). 

This process was repeated for each hyperparameter of all five algorithms.  The same random seed 

(42) was used for splitting the dataset between train/validation/test sets, up-sampling, and model 

initialization in order to ensure that everything else was kept constant during hyperparameter tuning.  

Table 2 displays the final hyperparameters selected for each algorithm. 

 
Table 2: Final hyperparameters of each algorithm. 

Hyperparameter Decision 
Tree (DT) 

Random 
Forest (RF) 

Boosted 
Trees (BT) 

Logistic 
Regression 

(LR)  

Support 
Vector 

Machine 
(SVM) 

maxDepth 5 5 5   

maxIterations  10 10 10 11 

minLossReduction 0 0 0   

minChildWeight 1000 1000 0.1   

stepSize   0.3 1  

earlyStoppingRounds   None   

rowSubsample  0.7 1   

columnSubsample  0.7 0.8   

l1Penalty    0  

l2Penalty    0.01  

penalty     1 

convergenceThreshold    0.01 0.01 

featureRescaling    True True 
Empty cells indicate that the hyperparameter does not apply to the algorithm. 
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Addition of the PLCO Dataset 

 Each of the five algorithms were trained using their default hyperparameters on just the IPUMS 

dataset as well as the IPUMS + PLCO dataset in order to determine whether including the PLCO data 

improved performance.  The dataset with the highest mean AUC across all five models was used to train 

the models in the remainder of this study.  

 

Final Model Training/Testing 

Each algorithm was initialized with its respective final hyperparameters as shown in Table 2.  

Each algorithm was trained 10 times on the same set of 10 randomly-generated random seeds.  Each 

model was initialized with the same set of random seeds such that, for example, run 5 of one algorithm 

could be compared to run 5 of another algorithm.  The models were trained, validated, and tested in the 

same fashion as described in the “Model Training, Validation, and Testing Procedures” section.  Each 

model was also tested on the PanCAN dataset.  Given that the PanCAN dataset only contained pancreatic 

cancer patients, only a sensitivity value was calculated. 

After the five algorithms were run 10 times each, the model from each algorithm that had the 

highest AUC value was designated as the final model of that respective algorithm.  The model among 

those five best models with the highest AUC value was designated as the final model used in the iPhone 

app. 

 

Variable Importance 

When using the model in the real world, it would be important for doctors and/or patients to 

understand which variables are the most important predictors of pancreatic cancer.  This can help 

determine whether the patient can input enough information to generate as accurate of a prediction as 

possible.  To determine variable importance, the standard variable permutation technique was used.  Each 

variable in the testing set was randomly shuffled and then evaluated on the final model, and the difference 

in AUC between the final model tested on the normal dataset and the final model tested on the dataset 

with the permuted variable was calculated (Casalicchio et al., 2019).  Since permuting the values of a 

variable changes the relationship between that variable, other variables, and the label, a large positive 

difference in AUC before and after the permutation would indicate high importance of that variable in 

predicting pancreatic cancer (Casalicchio et al., 2019). 

 

iPhone App 

 The final model’s .mlmodel file was imported into an Xcode simulated app environment within 

the CoreML framework, exactly as was done during model testing.  An iOS app user interface and 
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backend code were custom developed using the SwiftUI framework within the Swift programming 

language in order to provide a seamless way for patients to enter data into the model, generate a 

prediction on-device, and view that prediction (“SwiftUI,” n.d.).  The app follows all Apple App Store 

Review and Human Interface guidelines (“App Store Review Guidelines,” n.d.; “Human Interface 

Guidelines,” n.d.). 

 

Results 
 This study developed machine learning models that aimed to improve upon previous models for 

predicting one’s risk of developing pancreatic cancer, test the models using an additional dataset, and 

develop an effective medium for generating predictions.  Training data were obtained from IPUMS and 

PLCO, preprocessed, and used to train five model algorithms 10 times each.  The models included 17 

unique variables, each linked to pancreatic cancer, and were trained on 752,527 participants with 983 

pancreatic cancer cases.  Sensitivity, specificity, and AUC of the models were of interest and therefore 

were analyzed.  The models were also tested on the PanCAN dataset, which only included pancreatic 

cancer cases, where a sensitivity value was calculated. 

 

Effect of Combining the IPUMS and PLCO Datasets 

 Before further training of the models, a dataset which yielded the highest AUC needed to be 

chosen.  The means of the sensitivity, specificity, and AUC values of the five algorithms trained solely on 

the IPUMS dataset vs. trained on the combined IPUMS + PLCO dataset are shown in Table 3.  The mean 

sensitivity and AUC of the five models trained on the IPUMS + PLCO dataset was greater than that of the 

IPUMS-only dataset by 0.099 and 0.021, respectively, and lower in mean specificity by 0.032.  Since the 

mean AUC of the models trained on the IPUMS + PLCO dataset was higher than that of the IPUMS-only 

dataset, the combined dataset was used for the remainder of this study. 

 
Table 3: Means of the sensitivity, specificity, and AUC values of the five algorithms trained solely on the 
IPUMS dataset vs. trained on the combined IPUMS + PLCO dataset. 

Dataset Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) 

IPUMS 0.658 (0.438-0.879) 0.788 (0.730-0.846) 0.813 (0.758-0.868) 

IPUMS + PLCO 0.757 (0.662-0.852) 0.756 (0.651-0.861) 0.834 (0.809-0.860) 
 
Model Performance 

 The results of the mean sensitivity, specificity, and AUC values of each algorithm are shown in 

Figure 2 and were computed for all five algorithms over 10 trials each.  The mean sensitivity of the 
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models ranged from 0.703 (RF; 95% CI: 0.666-0.740) to 0.826 (SVM; 95% CI: 0.802-0.850); mean 

specificity ranged from 0.644 (SVM; 95% CI: 0.640-0.648) to 0.806 (RF; 95% CI: 0.785-0.827); and 

mean AUC ranged from 0.795 (SVM; 95% CI: 0.785-0.805) to 0.855 (BT; 95% CI: 0.845-0.865).  The 

highest sensitivity a model achieved out of the 50 total trials was 0.859 by the SVM, meaning that 

“pancreatic cancer” was correctly predicted among those who had it 85.9% of the time in that trial.  The 

highest specificity observed was 0.861 by the RF, meaning that “healthy” was correctly predicted among 

those who were healthy 86.1% of the time in that trial.  The highest AUC observed was 0.870 by the BT, 

meaning that the probability of the BT ranking a random positive pancreatic cancer case closer to positive 

than negative is 87.0%.  The mean sensitivities of the DT, RF, and BT were lower than their respective 

specificities, whereas the mean sensitivities of the LR and SVM were higher than their respective 

specificities.  This resulted in higher mean AUCs for the DT, RF, and BT compared to the LR and SVM. 

 

 
Figure 2: Data were obtained by evaluating the sensitivity, specificity, and AUC each model after 
training.  Error bars represent the 95% confidence interval.  n = 10 for all models. 
 

Additionally, the metrics of the highest-AUC model from each algorithm are shown in Table 4.  

Of these models, the highest sensitivity (0.856) was achieved by the SVM; the highest specificity (0.791) 

was achieved by the BT; and the highest AUC (0.870) was achieved by the BT.  The final model used in 

the app was the BT model since it achieved the highest AUC of these models. 

 

Model Performance on the PanCAN Dataset 

The results of the mean sensitivity of each algorithm tested on the PanCAN dataset are shown in 

Figure 3 and were computed for all five algorithms over 10 trials each.  The mean sensitivity of the 

models tested on the PanCAN dataset ranged from 0.411 (BT) to 1.000 (LR & SVM).  The highest  
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Table 4: Sensitivity, specificity, and AUC values of the highest-AUC model from each algorithm. 
Algorithm Random Seed Sensitivity Specificity AUC 

Decision Tree (DT) 8242 0.798 0.711 0.861 

Random Forest (RF) 8242 0.778 0.754 0.866 

Boosted Trees (BT) 8242 0.788 0.791 0.870 

Logistic Regression (LR) 604 0.814 0.693 0.823 

Support Vector Machine 
(SVM) 604 0.856 0.640 0.819 

 

sensitivity, 1.000, was observed in every trial of the LR and SVM algorithms, meaning that pancreatic 

cancer was correctly predicted among those who had it 100.0% of the time in those trials.  The 

sensitivities of the DT, RF, and BT had very high variability (95% CI: 0.307-0.867, 0.112-0.724, 0.244-

0.576, respectively), whereas the sensitivities of the LR and SVM had zero variability (95% CI: 1.000-

1.000). 

 
Figure 3: Data were obtained by evaluating the sensitivity of the models tested on the PanCAN dataset 
after training.  Error bars represent the 95% confidence interval.  n = 10 for all models. 
 
Variable Importance 

 Figure 4 displays the difference in AUC between the final BT model and that from each variable 

permutation (see the Appendix for variable descriptions).  The permutation of Age yielded the largest 

difference in AUC of 0.242, followed by Moderate Activity Times Per Week (0.071).  Strenuous Activity 

Times Per Week, Smoke 100, Race, Diabetes, Alcohol Days Past Year, Smoke Years, Asthma, and BMI 

were also of diminishing but relative importance in predicting pancreatic cancer.  The remaining variables 

indicated little importance (difference in AUC < 0.0005), with the permutations of Functionally Limiting 
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Depression, Emphysema, Coronary HD or Attack, and Hypertension actually improving AUC, though 

only by a maximum of 0.0008 (Hypertension). 

 

 
Figure 4: Data were obtained by evaluating the difference in AUC between the final BT model and that 
from each variable permutation.  The greater the difference in AUC, the greater importance that given 
variable has on predicting pancreatic cancer. 
 

iPhone App 

 If being used in a clinical setting, it would be advantageous to provide a simple, efficient, and 

easy-to-use way for doctors and/or patients to input data into the model to generate a prediction.  Since 

smartphones are very prevalent in our everyday lives, creating an app to generate fast predictions would 

be ideal.  As shown in Figure 5, an iPhone app was developed with data input and prediction output 

functionality.  With privacy in mind, all data input by the user are fed into the model on-device and can be 

deleted after a prediction is generated.  In addition, all predictions are stored on-device and can be 

discarded as well. 
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Figure 5: Screenshots of the iPhone app created to facilitate user input of data and prediction output.  The 
final BT model was embedded within the app.  From left to right: welcome screen; question list; 
categorical answer view; final predictions. 
 

Discussion 
 The results of this study indicate that the inclusion of the PLCO dataset compared to the IPUMS 

dataset alone resulted in greater model performance in terms of sensitivity and AUC.  In addition, the DT, 

RF, BT, LR, and SVM models showed promising results, each receiving AUCs of ~0.82 or greater.  

While the LR and SVM models achieved perfect predictions on the PanCAN dataset, the DT, RF, and BT 

models achieved lower sensitivities with a large variability.  For the BT model, which received the 

highest AUC of all models, the age, physical activity, smoking, and race variables were important 

predictors of pancreatic cancer, while depression, among others, were not. 

 

Comparison to Previous Pancreatic Cancer Models 

Only the top-performing LR and SVM models achieved higher sensitivities than the ANN model 

from Muhammad et al. (2019), and no model achieved a higher sensitivity than the ANN or LR models 

from Hsieh et al. (2018).  In addition, no model achieved a higher specificity than Muhammad et al. 

(2019)’s ANN model (specificity was not calculated for Hsieh et al. (2018)’s models).  While only the 

top-performing DT, RF, and BT models achieved higher AUCs than Muhammad et al. (2019)’s ANN 

model, all models achieved higher AUCs than Hsieh et al. (2018)’s models. 

The final model used in the app, the BT, achieved a higher AUC than all three of the previously 

published models, outperforming the highest-AUC model, Muhammad et al. (2019)’s ANN, by 0.02.  As 



  13 

such, the BT model is superior in discriminating between pancreatic cancer and healthy cases compared 

to the other models in this study and all models of previous studies.  To put this into perspective, a 

comparison of receiver operating characteristic (ROC) curves between the BT model and Muhammad et 

al. (2019)’s ANN model is shown in Figure 6. 

 
Figure 6: Comparison of ROC curves (area under the ROC curve = AUC).  Left: Muhammad et al. 
(2019)’s ANN model.  Right: BT model from this study. 
 

This improvement suggests that the dataset, algorithms, and model hyperparameters used in this 

study were more effective for this task than those used in previous studies.  Muhammad et al. (2019) 

created an ANN model using similar versions of the IPUMS and PLCO datasets consisting of 800,114 

participants with 898 pancreatic cancer cases.  Although the present study only included 752,527 

participants, 983 of them had pancreatic cancer, making the ratio of pancreatic cancer to healthy cases 

higher than that of Muhammad et al. (2019)’s study (0.13% > 0.11%). 

Although machine learning models generally yield better results with larger datasets (Barbedo, 

2018), perhaps the greater number of pancreatic cancer cases that the model could “learn” from more than 

compensated for the ~50,000 fewer total participants compared to Muhammad et al. (2019)’s ANN.  The 

increase in pancreatic cancer cases may also explain why the addition of the PLCO dataset improved 

AUC in both the present study and in Muhammad et al. (2019)’s study by 0.021 and 0.140, respectively. 

The number and relevance of variables used to train a model may also play a role.  Hall & Smith 

(1998) stresses the importance of not just including variables which are relevant but also eliminating ones 

which are extraneous in order to achieve the best performance.  Hsieh et al. (2018) created ANN and LR 

models using the Longitudinal Cohort of Diabetes Patients dataset from the National Health Insurance, 

consisting of 1,358,634 participants with 3,092 pancreatic cancer cases.  Though this is the largest dataset 

with the highest percentage of pancreatic cancer cases, most of the variables only applied to diabetes 

patients and many of the most common pancreatic cancer risk factors were not included.  This may 

explain the weak performance of their ANN and LR models in terms of AUC. 
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Moreover, in the present study, the tree-based algorithms (DT, RF, and BT) had higher AUCs 

than that of the LR and SVM algorithms.  As mentioned by Uddin et al. (2019), tree-based algorithms and 

ANNs tend to perform well for large datasets consisting of multiple data types (i.e., continuous & 

categorical) with high-complexity relationships between variables, whereas LRs and SVMs are better for 

lower-complexity problems.  Since the DT, RF, BT, and Muhammad et al. (2019)’s ANN had higher 

AUCs than all of the current and previous LRs/SVMs, perhaps predicting pancreatic cancer is a high-

complexity problem for which tree-based models and ANNs are better suited for. 

 

Impact of Depression on Model Performance 

One of the reasons for determining variable importance of the final BT model was to investigate 

the effects of including depression on model performance.  Interesting to note is that the permutation 

(random shuffling) of the depression variable (Functionally Limiting Depression) actually improved 

AUC, indicating that while depression is a risk factor of pancreatic cancer, it had a negative effect on 

model performance. 

There are a few reasons that may explain this.  Adding additional variables generally results in 

better model performance; however, it is more important that those variables are relevant, clean, and 

reliable (Hall & Smith, 1998).  The depression variable is relevant since it is known to be a predictor of 

pancreatic cancer (Kenner, 2018; Olson et al., 2016); however, this variable was unreliable in the form of 

missing values (Functionally Limiting Depression was not included in the PLCO dataset, accounting for a 

total of 20.0% missing values).  This resulted in only 21.9% of the total pancreatic cancer cases (215/983) 

available for the model to learn the relationship of depression from, thereby decreasing the model’s ability 

to discriminate between pancreatic cancer and healthy cases, which may explain the decrease in AUC. 

Before the present study, I conducted a study aimed at improving upon Muhammad et al. (2019) 

and Hsieh et al. (2018)’s models in terms of sensitivity, specificity, and AUC values.  Thirty variables 

were used from the IPUMS Health Surveys dataset encompassing 602,558 anonymized participants to 

create an ANN and LR model.  Though these models failed to improve upon the previously published 

models (hence why the present study aimed to do so with additional data, algorithms, and refined 

variables), I found that the inclusion of three depression variables (two of which had > 75% missing 

values) decreased AUC as well.  As such, it would be beneficial to include depression variables with 

significantly fewer missing values in order to potentially improve performance (Hall & Smith, 1998). 

Yet a closer look at the dataset in the present study reveals that only 8 of the 215 patients with 

pancreatic cancer reported some form of depression, indicating that it may only occur in a subset of cases.  

In addition, this variable does not distinguish between those with a sudden onset of depression and those 

with long-term depression.  Moreover, Moderate Activity Times Per Week and Strenuous Activity Times 
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Per Week each had the 2nd and 3rd highest percentage of missing values out of all variables (8.5% and 

7.8%, respectively) and still were the 2nd and 3rd most important variables, respectively.  Given this 

information, depression may simply not be a useful predictor of pancreatic cancer. 

 

Variability in Model Sensitivities Tested on the PanCAN Dataset 

 As indicated in the results, the sensitivities of the DT, RF, and BT models tested on the PanCAN 

dataset contained a notably high variability while every trial of the LR and SVM models yielded perfect 

sensitivity (1.000).  As such, the LR and SVM models may be of interest even though the BT had the 

highest AUC.  However, as can be seen in the Appendix, the PanCAN dataset contained only 6 of 17 

variables that were used to train the models, and all of which except Age, Sex, and Race contained over 

85% missing values.  As a result, the abundance of missing data from the PanCAN dataset could have 

resulted in inaccuracies when testing the models (Hall & Smith, 1998).  Coupled with that, three of the six 

variables available in the PanCAN dataset (Smoke 100, Race, and Diabetes) were identified as important 

variables for predicting pancreatic cancer, so their limited presence due to missing values in the PanCAN 

dataset could have impacted performance as well (Hall & Smith, 1998).  The fact that the LR and SVM 

models achieved a perfect sensitivity score for every trial is unusual and further indicates that the missing 

values and small number of variables may lead to misleading results.  Although it was of great interest to 

test model performance on an additional dataset, the poor/inconsistent performance may just reflect the 

need for more complete data. 

 

A Delicate Balance Between True Positives and True Negatives 

 In this problem, it can be more important to identify true positives (sensitivity) than to identify 

true negatives (specificity) since that could make the difference between life and death.  If the model were 

to predict that a patient would not develop pancreatic cancer, but they do end up getting it, then the 

patient could die.  However, it is also important that the model does not yield too many false positives in 

order to prevent unnecessary panicking and screening. 

 Figure 7 displays confusion matrices (diagrams representing true/false positives/negatives) of the 

final BT model compared to the highest-sensitivity model, the SVM.  As shown in the confusion 

matrices, the BT missed 21 pancreatic cancer cases while the SVM only missed 14.  However, the SVM 

incorrectly classified 11,286 more patients as having pancreatic cancer than the BT.  Though the BT 

missed 7 more pancreatic cancer cases than the SVM, one could argue that the SVM’s 11,286 additional 

false positives could create unnecessary anxiety and expose patients to the potentially detrimental effects 

of screening, outweighing the benefit of identifying more true positives.  Yet at the same time, identifying 



  16 

as many of these true pancreatic cancer patients as possible is crucial.  As such, maximizing both 

sensitivity and specificity is key if a model was to be deployed in the real world. 

 

 
Figure 7: Confusion matrices of the final BT (left) and SVM (right) models.  The confusion matrices are 
applied with the standard cutoff of 0.5 for discriminating between pancreatic cancer and healthy cases.  
‘0’ represents a negative case and ‘1’ represents a positive case. 
 

Variable Importance 

 Another reason for determining variable importance in this study was to inform users of the 

confidence of the model’s predictions.  While the models were trained on variables that most patients 

would know the answer to, there may still be instances in which a certain variable does not apply to a 

patient and/or a patient does not know the answer.  For example, if the user fails to input Age, Moderate 

Activity Times Per Week, Strenuous Activity Times Per Week, or Smoke 100 data, they should be made 

aware that predictions could be slightly less accurate.  However, if the user fails to input Hypertension, 

Coronary HD or Attack, or Emphysema data, they should be made aware that it will likely not impact the 

accuracy of predictions.  The app alerts the user if they are missing data that may cause an impact in this 

regard. 
 Interesting to note is that among the top five most influential variables on the BT model, age, 

smoking, and race remain consistent with high levels of importance as reported by the American Cancer 

Society’s collection of pancreatic cancer risk factors (“Pancreatic Cancer Risk Factors,” n.d.).  In 

addition, although physical activity is shown as important in this study, the American Cancer Society 

notes that it has an “unclear effect” on one’s risk (“Pancreatic Cancer Risk Factors,” n.d.). 
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Limitations and Future Research 

 One significant limitation in this study was the lack of pancreatic cancer cases in the training 

dataset.  While this study did employ methods to up-sample the pancreatic cancer cases and included 

additional data to help further balance the cases, it would be best to have a dataset which naturally 

contains more balanced cases to increase generalization and therefore model performance (Boyle, 2019).  

In addition, the depression variable did not exist in the PLCO dataset, resulting in a significant percentage 

(20.0%) of missing values in the combined dataset.  As such, finding more depression data may help 

determine the impact of depression on model performance and perhaps increase the overall performance 

of the model as well.  Furthermore, having a dataset like PanCAN to test the models on additional cases, 

except with a more complete set of data, would help provide further insight into model performance. 

Though this study presents the five models as effective tools in identifying those at risk for 

pancreatic cancer, the inclusion of an ANN, which has also been shown to be effective for disease 

prediction, should be considered in order to potentially achieve better performance (Muhammad et al., 

2019; Nartowt et al., 2020; Roffman et al., 2018a, Roffman et al., 2018b).  Improvements could also be 

made to the resampling of the data, such as evaluating a popular up-sampling method, SMOTE, that was 

not explored in this study (Brownlee, 2020).  Lastly, before deploying the app into the real world, testing 

should be done to ensure that it is a viable method to include in modern medical workflows and should be 

improved/modified as necessary. 

 

Conclusions 
 This study investigated the use of machine learning algorithms to identify one’s risk of 

developing pancreatic cancer.  Five algorithms — Decision Tree, Random Forest, Boosted Trees, Logistic 

Regression, and Support Vector Machine — are shown to be effective in using machine learning to 

discriminate between patients with and without pancreatic cancer, achieving the highest AUC of 0.870 

(Boosted Trees model).  The addition of the PLCO data to the IPUMS data, which increased sample size 

by 24.9% and more than quadrupled the number of pancreatic cancer cases, improved mean AUC by 

0.021.  The testing of the models on the PanCAN dataset consisting of pancreatic cancer cases supported 

the effectiveness of the final models; however, a large variability in sensitivity between trials limits 

evidence.  In addition, the inclusion of depression did not improve performance, whereas risk factors such 

as age, physical activity, smoking, and race were the most influential.  Finally, an iPhone app was created 

to facilitate data input and prediction output by an end-user.  Once the models and app are fully 

optimized, they could become valuable tools assisting in the early diagnosis of pancreatic cancer by 

identifying high-risk candidates for further medical screening. 
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Appendix 
Table 1: Variables from the IPUMS, PLCO, and PanCAN datasets used to train and/or test the models. 

Variable Description Values IPUMS PLCO IPUMS 
+ PLCO PanCAN 

Age Age of person 18 - 85 

Mean: 
48.13 
SD: 
18.15 

Mean: 
62.64 
SD: 5.37 

Mean: 
51.02 
SD: 
17.41 

Mean: 
60.41 
SD: 
10.77 

Sex Biological sex of 
person 

Male 44.2% 49.2% 45.2% 52.0% 

Female 55.8% 50.8% 54.8% 48.0% 

Race Race of person 

White 74.1% 88.4% 77.0% 88.5% 
Black/African 
American 14.4% 5.1% 12.5% 2.0% 

Hispanic N/A 1.9% 0.4% 2.5% 

Asian 2.9% 3.7% 3.1% 2.9% 

Pacific Islander N/A 0.6% 0.1% 0.1% 

American Indian 0.9% 0.3% 0.8% 0.3% 

Multi-racial 0.3% N/A 0.3% 2.5% 

Other/Missing 7.3% < 0.05% 5.9% 1.3% 

BMI Body Mass Index of 
person 

6.6 - 99.8 
Mean: 
27.48 
SD: 6.09 

Mean: 
27.28 
SD: 4.92 

Mean: 
27.44 
SD: 5.87 N/A 

Missing 4.0% 1.5% 3.5% 

Asthma 
Person ever told by a 

doctor they had 
asthma 

No 88.2% 58.9% 82.4% 

N/A Yes 11.7% 6.2% 10.6% 

Missing/Unknown 0.1% 34.9% 7.0% 
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Coronary HD 
or Attack 

Person ever told by a 
doctor they had 

coronary heart disease 
or a heart attack 

No 93.7% 90.3% 93.0% 

N/A Yes 6.1% 9.0% 6.7% 

Missing/Unknown 0.2% 0.7% 0.3% 

Diabetes 
Person ever told by a 

doctor they had 
diabetes 

No 89.5% 91.7% 89.9% 3.5% 

Yes 10.5% 7.7% 9.9% 9.2% 

Missing/Unknown < 0.05% 0.6% 0.2% 87.3% 

Emphysema 
Person ever told by a 

doctor they had 
emphysema 

No 98.1% 96.8% 97.9% 

N/A Yes 1.8% 2.5% 2.0% 

Missing 0.1% 0.6% 0.2% 

Hepatitis or 
Cirrhosis 

Person ever told by a 
doctor they had 

hepatitis or cirrhosis 

No 90.2% 95.5% 91.2% 

N/A Yes 3.0% 3.7% 3.1% 

Missing/Unknown 6.9% 0.8% 5.7% 

Hypertension 
Person ever told by a 

doctor they had 
hypertension 

No 69.5% 65.4% 68.8% 

N/A Yes 30.4% 34.0% 31.2% 

Missing/Unknown 0.1% 0.6% 0.2% 

Stroke 
Person ever told by a 

doctor they had a 
stroke 

No 96.9% 96.9% 97.1% 

N/A Yes 3.0% 2.4% 2.9% 

Missing/Unknown 0.1% 0.6% 0.2% 

Alcohol Days 
Past Year 

The number of days in 
which a person had at 

least one alcoholic 
drink in the past year 

0 - 365 

Mean: 
47.56 
SD: 
88.85 

Mean: 
119.41 
SD: 
143.35 

Mean: 
59.31 
SD: 
103.30 

N/A 

Missing/Unknown 1.0% 22.2% 5.2% 

Smoke 100 
Person smoked 100+ 
cigarettes in the past 

year 

No 57.7% 31.1% 56.5% 5.9% 

Yes 41.6% 35.8% 43.5% 7.4% 

Missing/Unknown 0.7% 33.1% 7.2% 86.7% 

Smoke Years 
The number of years a 
person has smoked in 

his/her lifetime 

0 - 85 

Mean: 
9.77 
SD: 
15.18 

Mean: 
14.74 
SD: 
17.10 

Mean: 
10.77 
SD: 
15.71 

N/A 

Missing/Unknown 1.6% 1.1% 1.5% 

Moderate 
Activity Times 

Per Week 

The amount of times a 
person has engaged in 
moderate activity (i.e., 
a walk) per week over 

the past year 

0 - 28 
Mean: 
2.61 
SD: 3.76 

Mean: 
2.54 
SD: 2.14 

Mean: 
2.60 
SD: 3.57 N/A 

Missing/Unknown 2.1% 34.3% 8.5% 

Missing/Unknown 1.3% 33.9% 7.8% 
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Strenuous 
Activity Times 

Per Week 

The amount of times a 
person has engaged in 
strenuous activity (i.e., 
a run) per week over 

the past year 

0 - 28 
Mean: 
1.59 
SD: 3.02 

Mean: 
1.82 
SD: 2.09 

Mean: 
1.63 
SD: 2.91 N/A 

Missing/Unknown 1.3% 33.9% 7.8% 

Functionally 
Limiting 

Depression 

How long the person 
has had a depression, 
anxiety, or emotional 
problem that limits 
everyday activities 

None 97.5% 

N/A 

78.0% 5.6% 

< 3 months < 0.05% < 0.05% 3.3% 

3-5 months < 0.05% < 0.05% 3.0% 

6-12 months 0.2% 0.1% 0.5% 

> 12 months 2.3% 1.8% 0.4% 

Missing/Unknown < 0.05% 20.0% 87.2% 

PC (Label) 
Person ever told by a 

doctor they had 
pancreatic cancer 

No 100.0% 99.5% 99.9% 0.0% 

Yes < 0.05% 0.5% 0.1% 100.0% 

Value counts of categorical variables are represented as percentages while continuous variables are 
represented with the mean and standard deviation (SD).  “Missing/Unknown” values include both values 
missing in the original dataset as well as unknown answers re-coded as missing.  “N/A” values indicate 
that a variable or one or more of its codes do not exist in its respective dataset.  Fully re-coded variable 
names, descriptions, and values are displayed in this table and thus should not be directly compared to 
those of the raw IPUMS, PLCO, and PanCAN datasets. 
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